Marc Gartenberg
Rutgers University

Coupling tRNA synthesis with nuclear export and its impact on chromosome folding in yeast

January 21\(^{st}\) 2015 • 12:00 PM
Proteomics, Room 120

tRNAs genes (tDNAs) reside at seemingly random intervals along the chromosomes of budding yeast. Previous studies found that the highly active genes congregate at the nucleolus, perhaps to coordinate tRNA production with ribosome assembly. While studying spatial and temporal aspects of tDNA function, my lab recently uncovered several unexpected features of tRNA gene production. First, tDNA transcription fluctuates during cell cycle progression with highest levels occurring in M phase. Second, tDNAs associate with nuclear pore complexes (NPCs) when tRNA synthesis peaks. Third, NPC-tDNA contact falters in the absence of Los1, the principal protein that exports tRNAs from the nucleus. Taken together, these findings suggest that yeast tDNAs associate with NPCs to coordinate RNA polymerase III transcription with the nuclear export of pre-tRNA. The data satisfy predictions of the gene-gating hypothesis (Blobel, 1985), which stipulates that active genes dock (gate) at NPCs to shepherd their transcripts to the cytoplasm. I will discuss this and other possibilities for why budding yeast evolved to express tDNAs in a spatially and temporally regulated manner.